Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Toxicol Environ Health B Crit Rev ; 24(7): 325-336, 2021 10 03.
Article in English | MEDLINE | ID: covidwho-1455046

ABSTRACT

Water-only or soap and water solutions are considered a gold standard for skin decontamination. However, there is lack of conclusive data regarding their efficacy. The aim of this study was to summarize in vivo animal model data on skin decontamination using water-only, and/or soap and water. Covidence, Embase, MEDLINE, PubMed, Web of Science, and Google Scholar were searched to identify relevant articles using water-only or soap and water decontamination methods in in vivo animals. Data extraction was completed from studies, representing three animal models, and 11 contaminants. Results demonstrated water-only decontamination solutions led to complete decontamination in 3.1% (n = 16/524) protocols, incomplete decontamination in 90.6% (n = 475/524) of protocols, and mortality in 6.3% (n = 33/524) of protocols. Soap and water decontamination solutions resulted in complete decontamination in 6.9% (n = 8/116) protocols, incomplete decontamination in 92.2% (n = 107/116) of protocols, and mortality in 6.9% (n = 8/116) of protocols. Although water only, or soap and water is considered a gold standard for skin decontamination, most papers investigated found that water only, and soap and water provided incomplete decontamination. Due to the insufficient data, and limitations that hinder the applicability of available data, evidence indicates that more contemporary studies investigating skin decontamination are needed, and compared to other model species, including humans, when practical.


Subject(s)
Decontamination/methods , Skin/metabolism , Soaps/chemistry , Animals , Humans , Models, Animal , Skin/chemistry , Species Specificity , Water/chemistry
2.
Arch Virol ; 166(9): 2487-2493, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1298567

ABSTRACT

The safety of personal protective equipment (PPE) is very important, and so is the choice of materials used. The ability of electrostatic charges (ESCs) generated from the friction of engineered materials to attract or repel viruses has a significant impact on their applications. This study examined the ESCs generated on the surface of PPE used by healthcare workers to enhance their potential effectiveness in protecting the wearer from viruses. This is a crucial consideration for the newly emerged severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), which has a negative charge. The magnitudes and signs of generated ESCs on the surfaces of the PPE were determined experimentally using an Ultra Stable Surface DC Voltmeter. The high negative ESCs acquired by the polyethylene disposable cap and facemask are expected to repel negatively charged viruses and prevent them from adhering to the outer layer of the material. Also, the choice of polypropylene for facemasks and gowns is excellent because it is an aggressively negatively charged material in the triboelectric series. This property guarantees that facemasks and gowns can repel viruses from the wearer. However, the positive ESCs generated on latex glove surfaces are of great concern because they can attract negatively charged viruses and create a source of infection. In conclusion, it is necessary to ensure that PPE be made of materials whose surfaces develop a negative ESC to repel viruses, as well as to select polyethylene gloves.


Subject(s)
COVID-19/prevention & control , Health Personnel/education , Personal Protective Equipment/virology , SARS-CoV-2/chemistry , COVID-19/transmission , Hair/chemistry , Health Knowledge, Attitudes, Practice , Humans , Latex/chemistry , Materials Testing , Polyethylene/chemistry , Polypropylenes/chemistry , Skin/chemistry , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL